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Abstract. Both in local-density approximation (LDA) and in generalised-gradient approximation (GGA)
the electronic structure of Aluminium is evaluated by use of the modified augmented plane wave (MAPW)
self-consistent scheme. The LDA based on the exchange correlation functional by Vosko, Wilk and Nusair
gives the equilibrium lattice constant in good accord with its experimental value. The hole sheet of the
Fermi surface, h2, is well described by weakly distorted spheres with origin at (2, 0, 0) 2π

a
and (1, 1, 1) 2π

a

in the reciprocal lattice. Near and above the equilibrium lattice constant the electronic sheet, e3, is found
to be quite similar to the model originally proposed by Ashcroft. However, even moderate compressions
induce a drastic variation.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.20.-b Electron
density of states and band structure of crystalline solids

1 Introduction

In the past the electronic structure of Aluminium, es-
pecially the shape of the Fermi surface (FS) has been
extensively investigated, mostly by use of the pseudopo-
tential method. By comparing with de Haas-van Alphen
(dHvA) experiments Ashcroft [1] proposed the electronic
sheet e3 to consist of four spindles connected at the
edges of the square faces of the fcc Brillouin zone (BZ).
In this model the state W

′
2 is not occupied in contrast

to the competing model [2] where the four spindles are
joined near each W -point. In the following decades the
first model was confirmed by high-precision dHvA ex-
periments [3–5] supported by pseudopotential calcula-
tions [1,4–6] with suitably chosen potential Fourier coeffi-
cients or Korringa-Kohn-Rostocker (KKR) calculations [7]
with suitably chosen phase shifts, both allowing a consis-
tent description of the experimental data. Although the
shape of the FS is, with some reservation as for example
the total energy, the charge density, or the Fermi energy,
a ground state property in the case of Al no sophisticated
investigation has been performed using the self-consistent
potential obtained by modern LDA or GGA investiga-
tions and highly accurate band structure schemes. The
present investigation closes this gap. Section 2 reports on
results from all-electron MAPW calculations using various
exchange-correlation functionals in LDA and GGA. Simi-
lar to a previous investigation [8] the LDA functional by
Vosko, Wilk and Nusair [9] produces an equilibrium lat-
tice constant in closer agreement with the experimental
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value than the GGA. In Section 3 it is found that impor-
tant details like the position of the state W

′
2 relative to

the Fermi level are quite sensitive to the lattice constant
with the consequence that even a small compression of the
lattice significantly varies the shape of the electronic FS
sheet.

2 Evaluation of the electronic structure

2.1 The all-electron MAPW-scheme

The band structure problem was solved within the all-
electron self-consistent MAPW framework in LDA and
GGA. As remarked by Boettger and Trickey [10] in the
GGA special care is advisable as it also needs the gradi-
ent and the Laplacian of the charge density. In contrast to
previous investigations [11–14] where most of the details
of the scheme are described we do not use the quadratic
r−mesh originally proposed by Moruzzi et al. [15] but de-
fine the radial points by

ri = r0 ∗
[
1 − cos

π

2
i− 1
i0 − 1

]
0 ≤ i ≤ i0 (1)

ri = r0 ∗
[
1 +

π

2
i− i0
i0 − 1

]
i0 ≤ i ≤ iapw (2)

where r0 = rapw/

[
1 +

π

2
iapw − i0
i0 − 1

]
, (3)

which is more appropriate in the valence electron region.
Suitably the integers i0 and iapw are chosen to be 120
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and 160, respectively. The MAPW scheme allows to treat
the core electrons in the same way as the valence electrons
i.e. the Bloch-functions are approximated by a superpo-
sition of plane waves augmented inside the APW-sphere
by a product of spherical harmonics and properly cho-
sen radial functions. In contrast to the generic augmented
plane wave APW-scheme we can restrict the angular quan-
tum number for the s-p-metal Al to 2 since additional
constraints make the wave functions continuously differ-
entiable at the surface of the APW-sphere. All occupied
electronic states are converged to 1 mRyd by considering
approximately 50 plane waves and 5 different radial func-
tions for each value of the angular momentum l ≤ 2. From
the occupied states the electronic density n(r) is then de-
termined. As a consequence of the MAPW ansatz a sym-
metric combination of plane waves superimposed by an
angular dependent contribution within the APW sphere
is obtained. To avoid any truncation error the latter con-
tribution was evaluated along 6 different directions specif-
ically chosen [16–20] in the 1/48th of the unit sphere. By
averaging over all angular dependent contributions from
these directions the crystal potential of warped muffin-tin
shape in LDA is found. In GGA the charge density along
these directions is fitted to a sum of products of spheri-
cal harmonics rlYlm(r0) and radial functions ρl(r). This
has the advantage that ∇ rlYlm(r0) is a superposition of
spherical harmonics of order (l−1) and that the Laplacian
of the spherical harmonics vanishes. The radial deriva-
tive of ρl(r)is obtained from the cubic spline interpolant
of ρl(r). This procedure is numerically reliable since its
derivatives at r = 0 and r = rapw are known with high ac-
curacy. The radial part of the Laplacian is found by spline
interpolation of the function

f(r) = r2
dρl(r)
dr

, hence (4)

d2ρl

dr2
+

2
r

dρl

dr
=

1
r2
df

dr
. (5)

Both steps guarantee that the input for the GGA is suffi-
ciently accurate. Outside the APW sphere a suitably cho-
sen fine mesh of equidistantly distributed r-points allows
to treat exchange and correlations contributions in LDA
and GGA to any accuracy wanted. In the LDA scheme
exchange and correlation are described by a functional
proposed by Vosko et al. [9] which in the case of Lithium
brought the lattice constant quite close to its experimen-
tal value [14]. The GGA functionals proposed by Perdew
et al. [21] and by Perdew et al. [22] are used, which in
the following are denoted by pw91 and pbe, respectively.
By neglecting the local variation of the density n(r) in the
GGA-functionals e.g. setting ∇n(r) and ∆n(r) equal zero
additional LDA results are obtained, denoted by pbe = 0.
Finally the BZ integrations over the occupied states yield-
ing the electron density and the total energy are approx-
imated by sums over a varying numbers of properly cho-
sen k points in the irreducible wedge [23–25]. Not only
in the use of this more elaborate functional but in the
warped muffin-tin approximation of the crystal potential
and the numerical accuracy guaranteed by the choice of

Fig. 1. Dependence of the total energy Etot relative to certain
offsets on the lattice constant a. Upper panel: LDA results:
Dashed line 110, full line 770, dotted line: 5740 k-points, re-
spectively. Lower panel: GGA-pbe results: Dashed line 110, full
line 770 k-points, respectively and GGA-pw91 results with off-
set −484.966 Ryd: Dotted line 110 k-points.

some intrinsic parameters the present work differs from
other investigations.

2.2 Results of the total energy calculations, GGA
versus LDA

Self-consistent calculations both in LDA and in GGA were
performed at equally spaced values of the lattice constant
in the interval [6.992, 7.980] a.u. The result of all calcu-
lations with various grids of k-points are summarised in
Figure 1 which shows the total energy as function of the
lattice constant after a shift by an appropriately chosen
offset. In the upper panel the LDA-vwn results are dis-
played obtained by considering 110, 770 and 5740 k-points
in the irreducible wedge. These curves differ from each
other by rigid vertical shifts of 2.6 mRyd and 0.6 mRyd,
respectively but give consistent values of the curvature.
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Table 1. Ground state magnitudes for different exchange
correlation functionals. hl : LDA functionals according Hedin
and Lundqvist [26]. vwn: LDA functionals according Vosko
et al. [9]. pbe = 0: GGA functionals according Perdew, Burke
and Ernzerhof [22] but local variation of the potential ne-
glected. pbe: GGA functionals according Perdew, Burke and
Ernzerhof [22]. lda-pbe: as pbe but using the LDA-vwn den-
sity. pw91 : GGA functionals according Perdew et al. [21].

a0(Bohr) Etot,0(Ryd) B(GPa) dB
dp

γ

hl 7.4736 −483.38905 89.45 4.91 3.728

vwn 7.5347 −482.94218 80.34 5.08 3.754

pbe = 0 7.5371 −482.93312 80.08 5.02 3.767

pbe 7.8091 −484.73146 53.23 3.39 4.330

lda− pbe 7.8110 −484.72660 55.09 3.20 4.273

pw91 7.8811 −484.96556 46.65 4.10 4.281

exp 7.6194 81.97 3.9

From these results we learn that with respect to the posi-
tion of the minimum and the curvature of the Etot-curve
in LDA a mesh of 110 points is only just sufficient. In
the lower panel the GGA results obtained with the func-
tionals [21,22] are plotted. With respect to the position
of the minimum and the curvature of the energy curve
all GGA results are quite similar; varying the k-grids and
using different functionals only has an effect on the mag-
nitude of the energy offset. However, by comparing both
panels we must conclude that the GGA scheme based on
the cited functionals reduces the interatomic forces with
the consequence that a bigger value of the lattice con-
stant is predicted and the curvature of the energy curve
is reduced.

To make this more quantitative, for each set of lat-
tice constants the total energy has been interpolated by
a cubic spline. The characteristic values of this local fit,
e.g. the total energy Etot,0, the lattice constant a0 and the
isothermal bulk modulus B at the minimum, are listed in
Table 1. In addition the value of the pressure derivative
of the bulk modulus is also given which is found by the
Legendre transform with the independent variable p and
the enthalpy-like function

H(p) = Etot + pV, p = −dEtot

dV
(6)

yielding

dB

dp
= V0

d3H

dp3
/
d2H

dp2
− 1, (7)

where V0 is the volume of the atomic cell at zero pressure.
Finally by a proper choice of the parameter γ the volume
dependence of the total energy has been globally fitted to
the Murnagham equation [14,27]

Etot = Etot,0 − BV0

γ − 1
+
BV

γ

[
1

(γ − 1)

(
V0

V

)γ

+ 1
]
. (8)

In the last row of Table 1 experimental values are given.
The lattice constant a was obtained by Coleridge and

Fig. 2. Band structure of fcc Al along the major symmetry di-
rections for the lattice constant a = 7.6190 a.u. The horizontal
line marks the Fermi level at EF = 1.5080 Ryd.

Holtham [5] by extrapolating the 20.4 K measurements
by Figgins et al. [33] to zero temperature. The bulk mod-
ulus is given by

B =
c11 + 2c12

3
, (9)

where the elastic constants c11, c12 are taken from ultra-
sonic experiments at T = 4 K [28]. dB

dp is a mean value of
different measurements according to [29].

The comparison surprisingly shows that the LDA in-
vestigations with the functionals [9] improve the agree-
ment with the experimental values of the lattice con-
stant whereas the bulk modulus is still too small. Both
GGA-investigations overestimate the lattice constant con-
siderably and give a a still smaller value of the bulk modu-
lus. The functionals denoted by pbe are definitely superior
to the functionals pw91 as they bring the lattice constant
closer to the experimental value. These findings stand in
contrast to previous investigations which for lighter ele-
ments favour the functionals pw91 [8,30,31]. However, a
glance at Table III compiled by Boettger and Trickey [10]
reveals that there is no clear trend in the lattice constants
and bulk moduli calculated with diverse approximations.
Especially in GGA it is likely that the scatter in the re-
sults reflects a high sensitivity to the numerical precision
of the density-gradient evaluation.

As a further consistency check of our GGA results we
have also calculated the total energy by use of the self-
consistent charge density of our LDA calculations. Thus
the influence of the exchange and correlation function-
als which strongly depend on the second derivative of the
charge density and for example produce an additional sin-
gularity at the nuclei are completely excluded. It is quite
remarkable that this alternative evaluation causes only an
almost rigid, vertical shift of the total energy by 5 mRyd
without any change of the shape of the energy curve.

3 Fermi energy, density of states and some
features of the Fermi surface

In Figure 2 the LDA band structure of fcc Al for a =
7.619028 a.u. = 4.0318 Å, which is quite close to the ex-
perimental value [5] is displayed. Its overall features are
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Table 2. The width W of the occupied valence bands, the energy EW of the state W
′
2 relative to the Fermi energy, the density

of the states at the Fermi energy. First line: LDA-vwn result, second line: GGA-pbe result, respectively.

a[a.u.] 7.2200 7.4480 7.5240 7.6000 7.6190 7.6526 7.6760

W [Ryd] 0.9043 0.8540 0.8381 0.8225 0.8187 0.8119

0.8408 0.8251 0.8098

EW [mRyd] −14.6 −5.1 3.4 8.1 9.2 11.0

0.4 4.8 9.3

N(EF)/N0(E0
F) 1.5464 1.5646 1.5468 1.5417 1.5411 1.5337

1.5512 1.5368 1.5330

Table 3. Cross-sectional areas and cyclotron mass of the orbits ψ[100], ψ[110] and ψ[111] as function of the lattice parameters.
Last column: Experimental results. a Coleridge and Holtham [5], b Anderson and Lane [4], c Moore and Spong [38]. Areas in
units of ( 2π

a
)2, cyclotron masses in units of the free-electron mass.

a[a.u.] 7.2200 7.4480 7.5240 7.6000 7.6190 7.6526 7.6760

ψ100 2.5524 2.5786 2.5881 2.5975 2.5998 2.6039 2.6069 2.66 ± 0.08b

ψ110 1.6881 1.6940 1.6958 1.6975 1.6979 1.6986 1.6991 1.695 ± 0.003a

ψ111 1.6181 1.6249 1.6274 1.6301 1.6308 1.6320 1.6329 1.621 ± 0.003a

|mc[100]| 1.7736 1.8887 1.9146 1.9408 1.9475 1.9592 1.9602 1.30 ± 0.1b, 1.27c

|mc[110]| 1.0430 1.0672 1.0753 1.0835 1.0855 1.0891 1.0916

|mc[111]| 1.1421 1.1689 1.1785 1.1885 1.1910 1.1957 1.1988 1.36 ± 0.1b, 1.40c

rather similar to other investigations compiled in refer-
ence [32], especially for the lowest valence bands. At the
W -point we find the state W

′
2 definitely above the Fermi

level which, as we shall see, significantly influences the
shape of the electron sheet e3. The width W of the occu-
pied valence bands, the energyEW of the stateW

′
2 relative

to the Fermi energy EF , the density of states at the Fermi
energy N(EF ) divided by its value in the case of the ho-
mogeneous electron gas of the same density are listed in
Table 2 for different lattice constants. These values are ob-
tained either by LDA with the functionals [9] or by GGA
with the functionals [21,22] using 770 k-points in the ir-
reducible wedge. Especially the energy of the state W

′
2

turns out to sensitively depend on the lattice constant: at
a = 7.4568 a.u. it crosses the Fermi level inducing a drastic
change of the sheet e3. By considering denser integration
grids in the BZ we have checked that these results are
almost converged, for example in the case of 4218 points
EW

′
2

coincides with EF at a = 7.4624 a.u.

In contrast to the energetics treated in the last sec-
tion the GGA based on the functionals [21] and [22] has
minor influence on the band structure: the energy W

′
2

state crosses the Fermi level at a = 7.5126 a.u. and
a = 7.40784 a.u., respectively. But due to the smaller
value of the bulk modulus a higher compression relative to
the minimum of the total energy is needed to induce the
characteristic change of the sheet e3. Experiments at low
temperature are best described by the fifth column of Ta-
ble 2 which corresponds to a = 4.0318 Å [33]. The density
of states determined from the low-temperature electronic
specific heat [34] is about 1.6 times the free electron value.
Compared to other metals the mass enhancement caused

by the electron-phonon interaction [35,36] turns out to be
rather small.

The present investigation confirms the old concept that
in the extended zone scheme the FS of non-compressed Al
is approximately described by spheres with origins at the
lattice vectors K and with radius determined by 3 elec-
trons in the atomic cell, kF = ( 9

2π )1/3 2π
a . The crystal po-

tential only induces non-marginal changes near the surface
of the BZ. Thus the dominant sheet of the FS within the
first BZ is a truncated octahedron at the point Γ which is
denoted by h2 as it mainly consists of hole states (see for
example Cracknell [37]). With respect to its shape all pre-
vious investigations [1,3–6] arrived at a similar result. We
have found that in the extended zone scheme spheres lo-
cated at next nearest lattice vectors which are stretched in
the [1, 0, 0] direction by 0.93% and compressed by 0.67%
in the [1, 1, 0] and in the [1, 1, 1] direction are close to
the sheet h2 apart from the neighbourhood of the Bril-
louin zones. Within the first BZ the sheet h2 is closed and
mostly consists of 12 spherical caps with centres at the
points (1, 1, 1)2π

a and (2, 0, 0)2π
a . Consequently the inter-

sections of the FS with central planes having normals in
the directions of high symmetry, commonly denoted by
ψ[100], ψ[110] and ψ[111], consist of circular arcs which
are more or less rounded at the locations of their inter-
sections. However, the intersection ψ[100] has a sharp
cusp which is caused by the accidental degeneracy with
the third-zone FS in the plane (1,0,0) near the point W.
The orbits ψ[100], ψ[110], and ψ[111] have been exten-
sively investigated by the dHvA effect and by cyclotron
resonance, see for example [4,5,38]. In Table 3 the cross-
sectional areas A and the cyclotron masses mc obtained
by our first-principles calculations are compared with



H. Bross: LDA and GGA investigations of aluminium 409

Fig. 3. Element of the FS e3 of Al(a = 7.22 a.u.). The right
half originates from rotation by π along the line [1,0,1] through
the point W. In kz-direction the scale is enlarged by a factor
of 10.

different experimental results. For all three orbits a quite
close agreement is found. In contrast to a previous pseu-
dopotential investigation [4] based on three heuristic pa-
rameters in [110]- and [111]-direction the cyclotron masses
satisfactorily agree with the experimental results. Obvi-
ously the MAPW-calculations lead to a stronger varia-
tion of the Fermi calibres with energy than the pseudopo-
tential scheme. The remaining differences can be ascribed
to electron-phonon interaction but are distinctly smaller
than those predicted by Ashcroft and Wilkins [35]. The
larger values of mc [100] are caused by the degeneracy
with the electronic sheet which considerably enhances the
energy derivative dkF

dE at certain points of the ψ[100]-orbit.

The other sheet of the FS, e3, is quite sensitive to the
crystal potential as it is essentially located near the sur-
face of the BZ. According to Table 2 small compressions
shift the state W

′
2 below the Fermi level which has drastic

consequences on the shape of e3. From our investigations
at different values of the lattice parameter we learn that
it is formed by a combination of two types of basic el-
ements which at moderate compression a/a0 ≤ 0.98 do
not interact: the spindle and the dumb-bell. The spindle
has the shape of a prolate ellipsoid with the major axis
along the edge of a square face of the BZ and the cen-
tre near a point U. As a possible type of the FS spin-
dles already have been mentioned by Ashcroft ([1], Fig. 9)
who called them “arms”. With decrease of the compres-
sion the spindle is uniformly stretched. The dumb-bell
near the point W(1,12 ,0) is almost rotational-symmetric
along the ky direction through this point as shown in
Figure 3. It is hard to imagine how such a geometrical
element might be composed of spherical caps which are
the reminiscence of the pseudopotential scheme. This is
likely the reason why Ashcroft [1] and other pseudopoten-
tial investigations did not find this element. The shape of
the dumb-bell sensitively depends on the lattice param-
eter. In ky direction it remains restricted to the domain
[0.42, 0.58] a.u. Its maximum extension perpendicular to
the ky-axis increases with the relaxation of the lattice
whereas its neck drastically shrinks and approaches the

value zero at a = 7.456 a.u. with the consequence that
the dumb-bell splits into two parts.

This different behaviour of the spindles and the dumb-
bells has a crucial influence on the shape of e3 and its ex-
tremal cross- sections. Below a = 7.354 a.u. well-separated
spindles and dumb-bells form the FS with closed orbits
only. They are denoted either by γ or by β following
the notation [4]. At a = 7.354 a.u. the neighboured spin-
dles and dumb-bells come into contact. Then e3 becomes
multiply connected and extends continuously throughout
k-space. In a magnetic field both unbounded and closed
orbits are possible and consequently the magnetoresis-
tance will only show saturation at certain orientation of
the magnetic field. On the joint of a spindle and a dumb-
bell a new type of minimal orbit denoted by α appears
which already has been suggested by Ashcroft [1]1. A fur-
ther orbit denoted ξ runs on the intersection of the squared
face with the four spindles. No evidence has been found for
the existence of an extremal orbit around the junction of
the four spindles with the dumb-bell of the type proposed
by Harrison [2]. Above a = 7.448 a.u. the FS is no longer
multiply connected because the dumb-bells split up. In
accordance with the proposal by Larson and Gordon [4]
based on a refined analysis of the experimental data the
four spindles on the edges of the square face of the BZ are
connected by one-half of a dumb-bell originally located at
the corner of the square face. These considerations are
supported by Table 4 which lists a choice of extremal
cross sections mostly centred near the points W(1,12 ,0)
and U(1,14 ,

1
4 )2.

Orbits of type α and ξ occur only after the merging
of the spindles and the dumb-bells. The minimal orbits β

′

on the dumb-bells decrease with increasing lattice param-
eter and approach the value zero at a = 7.456 a.u. when
the dumb-bells split up. Almost all other orbits grow with
increasing lattice parameter. In the final column experi-
mental results obtained by dHvA experiments [5] are listed
which are close to previous results [3,4]. The agreement
with our first-principles results is satisfying but not as
good as with those derived with the pseudopotential based
on three heuristic parameters [4–6]. Certainly part of the
differences are due to the fact that the Kohn-Sham FS
determined in the present investigation not fully incorpo-
rates many-body effects [40].

One aspect warrants further discussion. For the mag-
netic field along the [100] direction there is an accidental
degeneracy between the second zone ψ-orbit and the third
zone α-orbit which considerably enhances the cyclotron
masses. This degeneracy is raised only by spin-orbit effects
which, being small in Al, cause a small energy gap. As it is
easily broken down by a magnetic field the corresponding
dHvA oscillations are weak and difficult to observe [5].

1 Similar as in the case of the experiments it was not possible
to uniquely resolve some α and β orbits.

2 Great care has been taken to localise the exact position of
every orbit by finding the extremal value of the corresponding
area.
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Table 4. Cross-sectional areas of e3 enlarged by the factor 100 in units of ( 2π
a

)2. Last column experimental results by dHvA
experiments [5]. Minimum orbits are denoted by a †. The corresonding values of the centres of the orbits and of the cyclotron
masses are available in electronic form.

a[a.u.] 7.2200 7.296 7.372 7.4480 7.5240 7.6000 7.6190 7.6194

α[001] † 0.0142 0.0690 0.1198 0.1309 0.1340 0.1110±0.0004

α[001] 0.3035 0.2219 0.2063 0.1839±0.0012

α[010] 0.0701 0.0835 0.0869

α
′
[010] † 0.1488 0.2611 0.3630 0.3866

α[011] † 0.0115 0.0574 0.0932 0.1186 0.1233 0.1026±0.0004

α[101] † 0.3053 0.2378 0.2258 0.1992±0.0008

α[101] 0.0259 0.1304 0.2251 0.2361 0.2259

α[111] † 0.0152 0.0772 0.1272 0.1685 0.1759

α[111] 0.1272 0.1669 0.1758

β[001] 1.7409 1.5414 1.3439

β[010] 0.6609 0.6053 0.5704 0.5942 0.7007 0.8348 0.8689

β
′
[010] † 0.3623 0.2403 0.1228 0.0122

β[011] 0.7086 0.5971 0.5018

β
′
[011] † 0.5723 0.3855 0.1998 0.0201

β[110] 0.7383 0.6234 0.5311

β[101] 1.5402 1.3522 1.1430 0.8836

β[111] 0.8451 0.6926 0.5786 0.2477

β
′
[111] † 0.7872 0.5461 0.2934 0.0307

γ[001] 0.5325 0.7702 0.9987 1.2192 1.4308 1.6310 1.6789 1.5378±0.0004

γ[100] 1.8336 2.6295

γ[100] 1.8401 2.6391

γ[011] 1.6799 2.3469 2.8367

γ[011] 0.3898 0.5654 0.7349 0.8992 1.1669 1.2082 1.2443 1.1371±0.0004

γ[101] 0.7116 1.0262 1.3268 1.6343 1.8916 2.1775 2.2146

γ[111] 1.6540 2.3893 3.0998 3.7953 4.4502 5.1437 5.2329

γ[111] 0.4713 0.6826 0.8858 1.1083 1.2738 1.4539 1.4971 1.3716±0.0012

ξ[100] 37.240 36.317 35.657 35.173 35.075 34.69±0.06

ζ[100] 37.240 36.317 35.657 35.173 35.075 15.24±1.57

4 Concluding remarks

A very dense grid of k-points is required to properly re-
solve the contribution of the sheet e3 to the value of the
Fermi energy, the density n(r), etc. Most of the previous
investigations do not satisfy this requirement. As most
of the extremal areas of e3 are found to be quite sen-
sitive to the lattice constant it makes no great sense to
determine the derivative of these magnitudes with respect
to the pressure as has been done in a previous investiga-
tion [39].

The author would like to thank PD Dr. Engel, Universität
Frankfurt, for providing his DF codes and for enlightening dis-
cussions about the density functional aspect and Dr. R. Bader,
LRZ Munich, for extensive advice concerning the numerical

work and for critical reading the manuscript. Also thanks for
support in producing the figures is due to Mrs. J. Dreer, LRZ
Munich.
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